Title of article :
A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants
Author/Authors :
Mohebbi، نويسنده , , Ali Karimi Taheri، نويسنده , , Mahboobeh and Soltani، نويسنده , , Ataollah، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
11
From page :
1317
To page :
1327
Abstract :
In this study, a new approach for the auto-design of a neural network based on genetic algorithm (GA) has been used to predict saturated liquid density for 19 pure and 6 mixed refrigerants. The experimental data including Pitzerʹs acentric factor, reduced temperature and reduced saturated liquid density have been used to create a GA-ANN model. The results from the model are compared with the experimental data, Hankinson and Thomson and Riedel methods, and Spencer and Danner modification of Rackett methods. GA-ANN model is the best for the prediction of liquid density with an average of absolute percent deviation of 1.46 and 3.53 for 14 pure and 6 mixed refrigerants, respectively.
Keywords :
Mélange , Modélisation , Calcul , Densité , liquid , Refrigerant , Mixture , Modelling , Density , liquid , Frigorigène , CALCULATION
Journal title :
International Journal of Refrigeration
Serial Year :
2008
Journal title :
International Journal of Refrigeration
Record number :
1341853
Link To Document :
بازگشت