Title of article :
Prediction of the heat transfer rate of a single layer wire-on-tube type heat exchanger using ANFIS
Author/Authors :
Hayati، نويسنده , , Mohsen and Rezaei، نويسنده , , Abbas and Seifi، نويسنده , , Majid، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
4
From page :
1914
To page :
1917
Abstract :
In this paper, we applied an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for prediction of the heat transfer rate of the wire-on-tube type heat exchanger. Limited experimental data was used for training and testing ANFIS configuration with the help of hybrid learning algorithm consisting of backpropagation and least-squares estimation. The predicted values are found to be in good agreement with the actual values from the experiments with mean relative error less than 2.55%. Also, we compared the proposed ANFIS model to an ANN approach. Results show that the ANFIS model has more accuracy in comparison to ANN approach. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling heat exchangers for heat transfer analysis.
Keywords :
Réseau neuronal , Logique floue , Heat Exchanger , neural network , Modelling , ةchangeur de chaleur , heat transfer , tube aileté , Modélisation , Transfert de chaleur , Fuzzy Logic , finned tube
Journal title :
International Journal of Refrigeration
Serial Year :
2009
Journal title :
International Journal of Refrigeration
Record number :
1342424
Link To Document :
بازگشت