Title of article :
A discrete constitutive model for transverse and shear damage of symmetric laminates with arbitrary stacking sequence
Author/Authors :
E.J. Barbero، نويسنده , , G. Sgambitterra، نويسنده , , A. Adumitroaie، نويسنده , , X. Martinez، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
A damage constitutive model in conjunction with a 2-D finite element discretization is presented for predicting onset and evolution of matrix cracking and subsequent stiffness reduction of symmetric composite laminates with arbitrary stacking sequence subjected to membrane loads. The formulation uses laminae crack densities as the only state variables, with crack growth driven by both mechanical stress and residual stress due to thermal expansion. The formulation is based on fracture mechanics in terms of basic materials properties, lamina moduli, and critical strain energy release rates GIC and GIIC, only. No additional adjustable parameters are needed to predict the damage evolution. Spurious strain localization and mesh size dependence are intrinsically absent in this formulation. Thus, there is no need to define a characteristic length. Comparison of model results to experimental data is presented for various laminate stacking sequences. Prediction of crack initiation, evolution, and stiffness degradation compare very well to experimental data.
Keywords :
Laminated composites , Finite elements , Matrix cracks , Fracture mechanics , Crack density
Journal title :
COMPOSITE STRUCTURES
Journal title :
COMPOSITE STRUCTURES