Title of article :
Surrogate-based multi-objective optimization of a composite laminate with curvilinear fibers
Author/Authors :
Mahdi Arian Nik، نويسنده , , Kazem Fayazbakhsh، نويسنده , , Damiano Pasini ، نويسنده , , Larry Lessard، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
A variable stiffness design can increase the structural performance of a composite plate and provides flexibility for trade-offs between structural properties. In this paper, we examine the simultaneous optimization of stiffness and buckling load of a composite laminate plate with curvilinear fiber paths. The problem, which falls in the area of multi-objective optimization, is formulated and solved through a surrogate-based optimization algorithm capable of finding the set of optimum Pareto solutions. We integrate surrogate modeling into an evolutionary algorithm to reduce the high computational cost required to solve the optimization process. The results show that a curvilinear fiber path can increase both buckling load and stiffness simultaneously over the quasi-isotropic laminate. Furthermore, the optimum direction for varying the fiber angle is dependent on the loading direction and boundary conditions. The results for a plate under uniform compression with free transverse edges shows that varying the fiber orientation perpendicular to the loading direction can increase the buckling load by 116% with respect to that of a quasi-isotropic laminate.
Keywords :
Variable stiffness , Laminate design , Curvilinear fiber , Optimization , Metamodeling
Journal title :
COMPOSITE STRUCTURES
Journal title :
COMPOSITE STRUCTURES