• Title of article

    Using artificial neural network for predicting performance of the Ranque–Hilsch vortex tube

  • Author/Authors

    Korkmaz، نويسنده , , Murat Eray and Gümü?el، نويسنده , , Levent and Markal، نويسنده , , Burak، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2012
  • Pages
    7
  • From page
    1690
  • To page
    1696
  • Abstract
    In this study, effects of conical valve angle and length to diameter ratio on the performance of a counter flow Ranque–Hilsch vortex tube are predicted with artificial neural networks (ANNs) by using experimental data. In the model, inlet pressure (Pi), conical valve angle (ϕ), length to diameter ratio (L/D) and cold mass fraction (yc) are used as input parameters while total temperature difference (ΔT) is chosen as the output parameter. The multilayer feed forward model and the Levenberg–Marquardt learning algorithm are used in the network and the hyperbolic tangent function is chosen as a transfer function. The artificial neural network is designed via the NeuroSolutions 6.0 software. Finally, it’s disclosed that ANN can be successfully used to predict effects of geometrical parameters on the performance of the Ranque–Hilsch vortex tube with a good accuracy.
  • Keywords
    vortex tube , neural network , Performance , MODELING , Réseau neuronal , Tube vortex , Performance , Modélisation
  • Journal title
    International Journal of Refrigeration
  • Serial Year
    2012
  • Journal title
    International Journal of Refrigeration
  • Record number

    1344930