Title of article :
GENERAL RANDIC MATRIX AND GENERAL RANDIC ENERGY
Author/Authors :
گو، ران نويسنده Center for Combinatorics, Nankai University, P.O.Box 300071, Tianjin, China Gu, Ran , هوانگ، في نويسنده Center for Combinatorics, Nankai University, P.O.Box 300071, Tianjin, China Huang, Fei , لي، ژوليانگ نويسنده Center for Combinatorics, Nankai University, P.O.Box 300071, Tianjin, China Li, Xueliang
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2014
Abstract :
Let G be a simple graph with vertex set V (G) = fv1; v2; : : : ; vng and di the degree of its
vertex vi, i = 1; 2; : : : ; n. Inspired by the Randic matrix and the general Randic index of a graph, we
introduce the concept of general Randic matrix R of G, which is dened by (R)i;j = (didj) if vi
and vj are adjacent, and zero otherwise. Similarly, the general Randic eigenvalues are the eigenvalues
of the general Randic matrix, the greatest general Randic eigenvalue is the general Randic spectral
radius of G, and the general Randic energy is the sum of the absolute values of the general Randic
eigenvalues. In this paper, we prove some properties of the general Randic matrix and obtain lower and
upper bounds for general Randic energy, also, we get some lower bounds for general Randic spectral
radius of a connected graph. Moreover, we give a new sharp upper bound for the general Randic energy
when = ??1=2.
Journal title :
Transactions on Combinatorics
Journal title :
Transactions on Combinatorics