Title of article :
Development of ionomer membranes for fuel cells
Author/Authors :
Jochen A. Kerres، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
In this contribution an overview is given about the state-of-the-art at the membrane development for proton-conductive polymer (composite) membranes for the application membrane fuel cells, focusing on the membrane developments in this field performed at ICVT.
For preparation of the polymers, processes have been developed for sulfonated arylene main-chain polymers as well as for arylene main-chain polymers containing basic N-containing groups, including a lithiation step. Covalently cross-linked polymer membranes have been prepared by alkylation of the sulfinate groups of sulfinate group-containing polymers with α,ω-dihalogenoalkanes. The advantage of the covalently cross-linked ionomer membranes was their dimensional stability even at temperatures of 80–90°C, their main disadvantage their brittleness when drying out, caused by the inflexible covalent network. Sulfonated and basic N-containing polymers (commercial polymers as well as self-developed ones) have been combined to acid–base blends containing ionic cross-links. The main advantage of these membrane type was its flexibility even when dried-out, its good to excellent thermal stability, and the numerous possibilities to combine acidic and basic polymers to blend membranes having fine-tuned properties. The main disadvantage of this membrane type was the insufficient dimension stability at T>70–90°C, caused by breakage of the ionic cross-links, where the ionic cross-links broke as easier as lower the basicity of the polymeric base was. Some of the acid–base blend membranes were applied to H2 membrane fuel cells and to direct methanol fuel cells up to 100°C, yielding the result that these membranes show very good perspectives in the membrane fuel cell application.
Keywords :
PEFC , DMFC , Covalent cross-linking , Ionic cross-linking , Proton-conductive ionomer blend membranes , Membrane fuel cells
Journal title :
Journal of Membrane Science
Journal title :
Journal of Membrane Science