Title of article
Recovery of sulfur aroma compounds using membrane-based solvent extraction
Author/Authors
F.X. Pierre، نويسنده , , I Souchon، نويسنده , , M Marin، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2001
Pages
15
From page
239
To page
253
Abstract
This work focuses on a non-destructive process for recovering valuable aromatic fractions from the food industry’s odorous wastewaters. Non-dispersive solvent extraction of three sulfur aroma compounds, dimethyldisulfide, dimethyltrisulfide and S-methyl thiobutanoate, was carried out from very diluted aqueous solutions representing real effluent. The mass transfer from water to n-hexane was studied using a cross-flow designed hollow fiber membrane contactor. A preliminary study showed high affinity of solutes for n-hexane, with constant partition coefficients at infinite dilution between water and hexane in a 90–560 range. The influence of tube and shell side hydrodynamics on mass transfer was studied, with the aqueous phase on the tube side, and the organic phase on the shell side. The diffusion of solutes from the bulk aqueous phase to the aqueous–organic interface controlled the separation and contributed, under the conditions tested, to more than 97% of the overall mass transfer resistance. A resistance-in-series model overestimated overall mass transfer coefficients. The main explanation is the inaccuracy of the Lévêque correlation used at low Reynolds numbers. The choice of a correlation for predicting mass transfers in the solvent phase did not affect the estimation, since the corresponding mass transfer resistance was negligible. Mass transfer fluxes obtained experimentally by membrane-based solvent extraction were greater for the three aroma compounds than those obtained by pervaporation.
Keywords
Liquid–liquid extraction , Membrane contactors , Sulfur aroma compounds , Modeling , Pervaporation
Journal title
Journal of Membrane Science
Serial Year
2001
Journal title
Journal of Membrane Science
Record number
1350302
Link To Document