Title of article :
Transport of metal ions across an electrically switchable cation exchange membrane based on polypyrrole doped with a sulfonated calix[6]arene
Author/Authors :
Marceline N. Akieh، نويسنده , , Stephen F. Ralph، نويسنده , , Johan Bobacka، نويسنده , , Ari Ivaska، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
162
To page :
170
Abstract :
The conducting polymer polypyrrole, PPy, was used as the active component of a cation exchange membrane for transferring a range of metal ions between two solutions by electrical modulation of the polymer between its conducting and non-conducting states. The cation exchange membranes consisted of platinum sputter-coated polyvinylidene difluoride (PVDF) which had been coated with polypyrrole doped with sulfonated calix[6]arene (PPy(C6S)). It was shown that applying a constant potential in the range −0.4 to +0.6 V did not result in any metal ion flux across the PVDF/Pt-PPy(C6S) membrane. However, a gradual but steady increase in metal ion concentration was detected in the receiving cell when −0.8 V was applied to the membrane. To investigate the effect of film thickness on the permeability of metal ions, transport experiments were performed with composite membranes containing 2.0, 3.3, and 5.6 μm thick PPy(C6S) films. The permeability of the metals across the membrane increased as the PPy(C6S) film thickness decreased and was found to decrease in the following order: Ca2+ > K+ > Mn2+ ≫ Co2+, when the receiving cell contained deionised water. The PVDF/Pt-PPy(C6S) composite membrane showed significant permeability towards metal ions such as Ca2+, K+ and Mn2+, with the flux for Ca2+ higher than that seen for this metal ion with any previously studied PPy films containing other complexing dopants.
Keywords :
Electroactive membrane , Polypyrrole , Sulfonated calixarene , Complexing ligands , Metal ion flux
Journal title :
Journal of Membrane Science
Serial Year :
2010
Journal title :
Journal of Membrane Science
Record number :
1355185
Link To Document :
بازگشت