Title of article :
The primary origin of dose rate effects on microstructural evolution of austenitic alloys during neutron irradiation
Author/Authors :
Okita، نويسنده , , T and Sato، نويسنده , , T and Sekimura، نويسنده , , N and Garner، نويسنده , , F.A and Greenwood، نويسنده , , L.R، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
5
From page :
322
To page :
326
Abstract :
The effect of dose rate on neutron-induced microstructural evolution was experimentally estimated. Solution-annealed austenitic model alloys were irradiated at ≃400 °C with fast neutrons at seven different dose rates that vary more than two orders difference in magnitude, and two different doses were achieved at each dose rate. Both cavity nucleation and growth were found to be enhanced at lower dose rate. The net vacancy flux is calculated from the growth rate of cavities that had already nucleated during the first cycle of irradiation and grown during the second cycle. The net vacancy flux was found to be proportional to (dpa/s)1/2 up to 28.8 dpa and 8.4×10−7 dpa/s. This implies that mutual recombination dominates point defect annihilation in this experiment, even though point defect sinks such as cavities and dislocations were well developed. Thus, mutual recombination is thought to be the primary origin of the effect of dose rate on microstructural evolution.
Journal title :
Journal of Nuclear Materials
Serial Year :
2002
Journal title :
Journal of Nuclear Materials
Record number :
1356627
Link To Document :
بازگشت