Title of article :
Contribution to the understanding of the ZrNb(l%)O(0.13%) oxidation mechanism at 500 °C in dry air
Author/Authors :
Vermoyal، نويسنده , , J.J and Frichet، نويسنده , , A and Dessemond، نويسنده , , L، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
The oxidation of ZrNb(l%)O(0.13%) at 500 °C in dry air was investigated in situ by thermogravimetric analyses and electrochemical impedance spectroscopy. Sheets of the alloy were coated with different noble metals (Pt, Au, Ag) as electrode material. After an initial sub-parabolic rate law, the kinetics of ZrNb(l%)O(0.13%) oxidation are characterized by a transition to another decreasing rate law for different times and thicknesses. Noble metals were observed to clearly modify the oxidation rate, even when a pre-oxidized zirconia film was formed before the deposit and the increase in the oxidation rate was always monitored for thick oxides (30 μm). The kinetic transition is hypothesized to be associated with the microstructural degradation of the oxide film. Localized oxidation rate increases were revealed by scanning electron microscopy at the tip of radial cracks distributed on more than 2% of the total area of the sample. Catalytic effects observed on the oxidation rate after the noble metal deposition suggest that the mechanism controlling the oxidation rate is not a solely one of oxygen diffusion through the oxide layer. The reaction of oxygen reduction at the oxide/metal/gas interface partially controls the oxidation kinetics of ZrNb(l%)O(0.13%). Complex electrical signatures monitored during the oxide growth corroborate this assumption and hence indicate that oxygen reduction is still partially controlling the oxidation rate when noble metal are present on ZrNb(l%)O(0.13%) surface. Finally, a mixed process of interfacial-diffusion mechanism is proposed to be the rate determining step for ZrNb(l%)O(0.13%) oxidation in this environment.
Journal title :
Journal of Nuclear Materials
Journal title :
Journal of Nuclear Materials