Title of article :
A new neodymium-doped BaZr0.8Y0.2O3−δ as potential electrolyte for proton-conducting solid oxide fuel cells
Author/Authors :
Yu Liu، نويسنده , , Youmin Guo، نويسنده , , Ran Ran، نويسنده , , Zongping Shao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
8
From page :
391
To page :
398
Abstract :
Chemically stable BaZr0.8Y0.2O3−δ (BZY) oxide is limited to applications as an electrolyte for solid oxide fuel cells (SOFCs) because of its poor sintering behavior. This study attempts to improve the sinterability and conductivity of BZY using the partial substitution of Zr4+ in BZY with Nd3+. An oxide with the nominal composition of BaZr0.7Nd0.1Y0.2O3−δ (BZNY) is specifically investigated. Results from X-ray diffraction (XRD) demonstrate Nd3+ is successfully doped into the lattice as anticipated and transmission electron microscopy (TEM) characterizations verify the morphology and crystal structure of the BZNY powder. Dilatometric measurement and scanning electron microscopy (SEM) observations provide verification that the sinterability of the oxide is effectively improved by introducing Nd3+. XRD and CO2-TPD results demonstrate that BZNY is relatively stable with respect to the CO2 atmosphere. The total conductivity of BZNY in wet H2 is 2.76×10−3 S cm−1 at 600 °C. An anode-supported thin-film BZNY electrolyte (∼30 μm) cell is fabricated, and the electrolyte layer is found to be well densified after co-sintering with the anode substrate at 1450 °C for 5 h. The cell delivers a peak power density of 142 mW cm−2 at 700 °C, higher than the reported values for a similar cell with BZY electrolyte.
Keywords :
Solid oxide fuel cells , Proton conductor , Sinterability , Yttrium-doped barium zirconate
Journal title :
Journal of Membrane Science
Serial Year :
2012
Journal title :
Journal of Membrane Science
Record number :
1359086
Link To Document :
بازگشت