Title of article :
Determining the shear properties of the PyC/SiC interface for a model TRISO fuel
Author/Authors :
Nozawa، نويسنده , , T. and Snead، نويسنده , , L.L and Katoh، نويسنده , , Y. and Miller، نويسنده , , J.H. and Lara-Curzio، نويسنده , , E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
The fracture behavior of TRISO-coated fuel particles is dependent on the shear strength of the interface between the inner pyrolytic carbon (PyC) and silicon carbide coatings. This study evaluates the interfacial shear properties and the crack extension mechanism for TRISO-coated model tubes using a push-out technique. The interfacial debond shear strength was found to increase with increasing sample thickness and finally approached a constant value. The intrinsic interfacial debond shear strength of ∼280 MPa was estimated. After the layer is debonded, the applied load is primarily transferred by interfacial friction. A non-linear shear-lag model predicts that the residual clamping stress at the interface is ∼350 MPa, and the coefficient of friction is ∼0.23, yielding a frictional stress of ∼80 MPa. These relatively high values are attributed to the interfacial roughness. Of importance in these findings is that this unusually high interfacial strength could allow significant loads to be transferred between the inner PyC and SiC in application, potentially leading to failure of the SiC layer.
Journal title :
Journal of Nuclear Materials
Journal title :
Journal of Nuclear Materials