Title of article :
ON ONE CLASS OF MODULES OVER GROUP RINGS WITH FINITENESS RESTRICTIONS
Author/Authors :
داشكوا ، اولگا يو. نويسنده Department of Mathematics, The Branch of Moscow State University in Sevastopol, Sevastopol, Ukraine Dashkova, Olga Yu.
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2014
Abstract :
The author studies the RG-module A such that R is an associative ring, a group G has
innite section p-rank (or innite 0-rank), CG(A) = 1, and for every proper subgroup H of infinite
section p-rank (or innite 0-rank respectively) the quotient module A=CA(H) is a finite R-module.
It is proved that if the group G under consideration is locally soluble then G is a soluble group and
A=CA(G) is a finite R-module.
Journal title :
International Journal of Group Theory
Journal title :
International Journal of Group Theory