Title of article :
A hybrid intelligent genetic algorithm
Author/Authors :
Javadi، نويسنده , , A.A. and Farmani، نويسنده , , R. and Tan، نويسنده , , T.P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
8
From page :
255
To page :
262
Abstract :
Application of genetic algorithms to optimization of complex problems can lead to a substantial computational effort as a result of the repeated evaluation of the objective function(s) and the population-based nature of the search. This is often the case where the objective function evaluation is costly, for example, when the value is obtained following computationally expensive system simulations. Sometimes a substantially large number of generations might be required to find optimum value of the objective function. Furthermore, in some cases, genetic algorithm can face convergence problems. In this paper, a hybrid optimization algorithm is presented which is based on a combination of the neural network and the genetic algorithm. In the proposed algorithm, a back-propagation neural network is used to improve the convergence of the genetic algorithm in search for global optimum. The efficiency of the proposed computational methodology is illustrated by application to a number of test cases. The results show that, in the proposed hybrid method, the integration of the neural network in the genetic algorithm procedure can accelerate the convergence of the genetic algorithm significantly and improve the quality of solution.
Keywords :
genetic algorithm , Hybrid , optimization , neural network
Journal title :
ADVANCED ENGINEERING INFORMATICS
Serial Year :
2005
Journal title :
ADVANCED ENGINEERING INFORMATICS
Record number :
1384223
Link To Document :
بازگشت