Title of article :
A general method for generating parametric Lorenz and Leimkuhler curves
Author/Authors :
Sarabia، نويسنده , , José Marيa and Gَmez-Déniz، نويسنده , , Emilio J. Sarabia Escriva، نويسنده , , Marيa and Prieto، نويسنده , , Faustino، نويسنده ,
Issue Information :
فصلنامه با شماره پیاپی سال 2010
Abstract :
Let L 0 consider an initial Lorenz curve. In this paper we propose a general methodology for obtaining new classes of parametric Lorenz or Leimkuhler curves that contain the original curve as limiting or special case. The new classes introduce additional parameters in the original family, providing more flexibility for the new families. The new classes are built from an ordered sequence of power Lorenz curves, assuming that the powers are distributed according to some convenient discrete random variable. Using this method we obtain many of the families proposed in the literature, including the classical proposal of Bradford (1934), Kakwani and Podder (1973) and others. We obtain some inequality measures and population functions for the proposed families.
Keywords :
Productivity , probability generating function , Cumulative distribution function , Gini index
Journal title :
Journal of Informetrics
Journal title :
Journal of Informetrics