Title of article
Optimised form of acceleration correction algorithm within SPH-based simulations of impact mechanics
Author/Authors
Shaw، نويسنده , , Amit and Roy، نويسنده , , D. and Reid، نويسنده , , S.R.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2011
Pages
15
From page
3484
To page
3498
Abstract
In the context of SPH-based simulations of impact dynamics, an optimised and automated form of the acceleration correction algorithm (Shaw and Reid, 2009a) is developed so as to remove spurious high frequency oscillations in computed responses whilst retaining the stabilizing characteristics of the artificial viscosity in the presence of shocks and layers with sharp gradients. A rational framework for an insightful characterisation of the erstwhile acceleration correction method is first set up. This is followed by the proposal of an optimised version of the method, wherein the strength of the correction term in the momentum balance and energy equations is optimised. For the first time, this leads to an automated procedure to arrive at the artificial viscosity term. In particular, this is achieved by taking a spatially varying response-dependent support size for the kernel function through which the correction term is computed. The optimum value of the support size is deduced by minimising the (spatially localised) total variation of the high oscillation in the acceleration term with respect to its (local) mean. The derivation of the method, its advantages over the heuristic method and issues related to its numerical implementation are discussed in detail.
Keywords
Impact mechanics , Smooth particle hydrodynamics , Acceleration correction , artificial viscosity , Total variation minimisation
Journal title
International Journal of Solids and Structures
Serial Year
2011
Journal title
International Journal of Solids and Structures
Record number
1387904
Link To Document