Title of article :
Micromechanics and structural response of functionally graded, particulate-matrix, fiber-reinforced composites
Author/Authors :
Genin، نويسنده , , Guy M. and Birman، نويسنده , , Victor، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
15
From page :
2136
To page :
2150
Abstract :
Reinforcement of fibrous composites by stiff particles embedded in the matrix offers the potential for simple, economical functional grading, enhanced response to mechanical loads, and improved functioning at high temperatures. Here, we consider laminated plates made of such a material, with spherical reinforcement tailored by layer. The moduli for this material lie within relatively narrow bounds. Two separate moduli estimates are considered: a “two-step” approach in which fibers are embedded in a homogenized particulate matrix, and the Kanaun–Jeulin (Kanaun, S.K., Jeulin, D., 2001. Elastic properties of hybrid composites by the effective field approach. Journal of the Mechanics and Physics of Solids 49, 2339–2367) approach, which we re-derive in a simple way using the Benveniste (1988) method. Optimal tailoring of a plate is explored, and functional grading is shown to improve the performance of the structures considered. In the example of a square, simply supported, cross-ply laminated panel subjected to uniform transverse pressure, a modest functional grading offers significant improvement in performance. A second example suggests superior blast resistance of the panel achieved at the expense of only a small increase in weight.
Keywords :
Optimization of laminated composites , Blast loading , Micromechanics , Composite materials , Ashby method for materials selection
Journal title :
International Journal of Solids and Structures
Serial Year :
2009
Journal title :
International Journal of Solids and Structures
Record number :
1387976
Link To Document :
بازگشت