Title of article :
Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites
Author/Authors :
H. Haftbaradaran، نويسنده , , H. M. Shodja، نويسنده , , H.M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
2978
To page :
2987
Abstract :
It is well-known that classical continuum theory has certain deficiencies in predicting material’s behavior at the micro- and nanoscales, where the size effect is not negligible. Higher order continuum theories introduce new material constants into the formulation, making the interpretation of the size effect possible. One famous version of these theories is the couple stress theory, invoked to study the anti-plane problems of the elliptic inhomogeneities and inclusions in the present work. The formulation in elliptic coordinates leads to an exact series solution involving Mathieu functions. Subsequently, the elastic fields of a single inhomogeneity in conjunction with the Mori–Tanaka theory is employed to estimate the overall anti-plane shear moduli of composites with uni-directional elliptic cylindrical fibers. The dependence of the anti-plane elastic moduli on several important physical parameters such as size, aspect ratio and rigidity of the fiber, the characteristic length of the constituents, and the orientation of the reinforcements is analyzed. Based on the available data in the literature, certain nano-composite models have been proposed and their overall behavior estimated using the present theory.
Keywords :
Couple stress , Anti-plane problem , Mathieu functions , Nano-Composites , Mori–Tanaka theory
Journal title :
International Journal of Solids and Structures
Serial Year :
2009
Journal title :
International Journal of Solids and Structures
Record number :
1388040
Link To Document :
بازگشت