• Title of article

    Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam

  • Author/Authors

    Zhang، نويسنده , , W. and Yao، نويسنده , , M.H. and Zhang، نويسنده , , J.H.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    29
  • From page
    541
  • To page
    569
  • Abstract
    The aim of this paper is to investigate the multi-pulse global bifurcations and chaotic dynamics for the nonlinear non-planar oscillations of a cantilever beam subjected to a harmonic axial excitation and two transverse excitations at the free end by using an extended Melnikov method in the resonant case. First, the extended Melnikov method for studying the Shilnikov-type multi-pulse homoclinic orbits and chaos in high-dimensional nonlinear systems is briefly introduced in the theoretical frame. Then, this method is utilized to investigate the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics for the nonlinear non-planar oscillations of the cantilever beam. How to employ this method to analyze the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications is demonstrated through this example. Finally, the results of numerical simulation are given and also show that the Shilnikov-type multi-pulse chaotic motions can occur for the nonlinear non-planar oscillations of the cantilever beam, which verifies the analytical prediction.
  • Journal title
    Journal of Sound and Vibration
  • Serial Year
    2009
  • Journal title
    Journal of Sound and Vibration
  • Record number

    1398924