Title of article :
The design of synthesized structural acoustic sensors for active control of interior noise with experimental validation
Author/Authors :
Li، نويسنده , , D.S. and CHENG، نويسنده , , L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
17
From page :
123
To page :
139
Abstract :
In this paper, the feasibility of using synthesized structural acoustic sensors (SSAS) for active noise control inside irregularly shaped enclosures is investigated. A SSAS consists of a cluster of inter-connected discrete PVDF elements, located on the surface of a vibrating structure enclosing a sound field. An optimal design ensures the sensor output to be directly related to the acoustical potential energy inside the enclosure. Hence, synthesized structural acoustic sensors can provide error signals for an active noise control system, and the use of microphones inside the enclosure can be avoided. A cylindrical shell with a floor partition, which can be used to model an aircraft cabin, is used as a test case. PZT actuators are used as control actuators. Both SISO (single input and single output) and MIMO (multi-input and multi-output) control systems are optimally designed using Genetic Algorithms and implemented with a Filtered-X Feedforward LMS (least-mean-square) controller. Their control performances are evaluated with different types of disturbances. To show the effectiveness of the optimal design approach, some non-optimal control systems are also tested and compared with the optimal one. It is shown that with optimally designed SSAS, an active structural acoustic control system can effectively reduce noise inside the enclosures without using any acoustic transducers.
Journal title :
Journal of Sound and Vibration
Serial Year :
2010
Journal title :
Journal of Sound and Vibration
Record number :
1399532
Link To Document :
بازگشت