Title of article :
Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft
Author/Authors :
Kamesh، نويسنده , , D. and Pandiyan، نويسنده , , R. and Ghosal، نويسنده , , Ashitava Ghosal، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
20
From page :
3431
To page :
3450
Abstract :
One of the most important factors that affect the pointing of precision payloads and devices in space platforms is the vibration generated due to static and dynamic unbalanced forces of rotary equipments placed in the neighborhood of payload. Generally, such disturbances are of low amplitude, less than 1 kHz, and are termed as ‘micro-vibrations’. Due to low damping in the space structure, these vibrations have long decay time and they degrade the performance of payload. This paper addresses the design, modeling and analysis of a low frequency space frame platform for passive and active attenuation of micro-vibrations. This flexible platform has been designed to act as a mount for devices like reaction wheels, and consists of four folded continuous beams arranged in three dimensions. Frequency and response analysis have been carried out by varying the number of folds, and thickness of vertical beam. Results show that lower frequencies can be achieved by increasing the number of folds and by decreasing the thickness of the blade. In addition, active vibration control is studied by incorporating piezoelectric actuators and sensors in the dynamic model. It is shown using simulation that a control strategy using optimal control is effective for vibration suppression under a wide variety of loading conditions.
Journal title :
Journal of Sound and Vibration
Serial Year :
2010
Journal title :
Journal of Sound and Vibration
Record number :
1399750
Link To Document :
بازگشت