• Title of article

    Hyperbolic heat conduction and associated transient thermal fracture for a piezoelectric material layer

  • Author/Authors

    Wang، نويسنده , , B.L. and Li، نويسنده , , J.E.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2013
  • Pages
    10
  • From page
    1415
  • To page
    1424
  • Abstract
    This paper studies the fracture mechanics of a piezoelectric material layer with an internal crack under the framework of hyperbolic, non-Fourier heat conduction. The paper includes two parts. The first part is for the case of a heated crack, in which the internal crack can be a source of heating (or cooling). This case develops the mode I thermal stress intensity factor at the crack tip. The second part is for the thermally insulated crack, which does not allow any penetration of the thermal flow across the crack. This case develops the mode II thermal stress intensity factor at the crack tip. Numerical results for the thermal stress intensity factor are plotted to show the effects of the thermal relaxation time, the crack length and the layer thickness. Comparisons between the non-Fourier results and the classical Fourier results are made. Limiting cases of the current problem include the solutions of thermoelastic crack problem and fracture mechanics associated with classical Fourier heat conduction.
  • Keywords
    thermal stresses , Hyperbolic heat conduction , Piezoelectric materials , Fracture mechanics
  • Journal title
    International Journal of Solids and Structures
  • Serial Year
    2013
  • Journal title
    International Journal of Solids and Structures
  • Record number

    1400560