Title of article :
Nonlocal damage model using the phase field method: Theory and applications
Author/Authors :
Voyiadjis، نويسنده , , George Z. and Mozaffari، نويسنده , , Navid، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
A new nonlocal, gradient based damage model is proposed for isotropic elastic damage using the phase field method in order to show the evolution of damage in brittle materials. The general framework of the phase field model (PFM) is discussed and the order parameter is related to the damage variable in continuum damage mechanics (CDM). The time dependent Ginzburg–Landau equation which is also termed the Allen–Cahn equation is used to describe the damage evolution process. Specific length scale which addresses the interface region in which the process of changing undamaged solid to fully damaged material (microcracks) occurs is defined in order to capture the effect of the damaged localization zone. A new implicit damage variable is proposed through the phase field theory. Details of the different aspects and regularization capabilities are illustrated by means of numerical examples and the validity and usefulness of the phase field modeling approach is demonstrated.
Keywords :
nonlocal , Isotropic material , Allen–Cahn equation , Phase field , Damage
Journal title :
International Journal of Solids and Structures
Journal title :
International Journal of Solids and Structures