Author/Authors :
Zhu، نويسنده , , M. and Friلk، نويسنده , , M. and Lymperakis، نويسنده , , L. and Titrian، نويسنده , , H. Hakan Aydin، نويسنده , , U. and Janus، نويسنده , , A.M. and Fabritius، نويسنده , , H.-O. and Ziegler، نويسنده , , A. and Nikolov، نويسنده , , S. and Hemzalovل، نويسنده , , P. and Raabe، نويسنده , , D. and Neugebauer، نويسنده , , J.، نويسنده ,
Abstract :
We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect.
Keywords :
Elasticity , Ab initio , calcite , Stiffening , Mg-substitution