Title of article :
Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement
Author/Authors :
Nimeskern، نويسنده , , Luc and Martيnez ءvila، نويسنده , , Héctor and Sundberg، نويسنده , , Johan and Gatenholm، نويسنده , , Paul F.X. Müller ?، نويسنده , , Ralph and Stok، نويسنده , , Kathryn S.، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2013
Pages :
10
From page :
12
To page :
21
Abstract :
Bacterial nanocellulose (BNC) is a novel non-degradable biocompatible material that promotes chondrocyte adhesion and proliferation. In this work, its potential use in ear cartilage tissue engineering (TE) is investigated. Firstly, the mechanical properties of native ear cartilage are measured in order to set a preliminary benchmark for ear cartilage replacement materials. Secondly, the capacity of BNC to match these requirements is assessed. Finally, a biofabrication process to produce patient-specific BNC auricular implants is demonstrated. mples (n=78) with varying cellulose content (2.5–15%) were compared using stress-relaxation indentation with human ear cartilage (n=17, from 4 males, aged 49–93 years old). Additionally, an auricle from a volunteer was scanned using a 3T MRI with a spoiled gradient-echo sequence. A negative ear mold was produced from the MRI data in order to investigate if an ear-shaped BNC prototype could be produced from this mold. sults show that the instantaneous modulus Ein, equilibrium modulus Eeq, and maximum stress σmax of the BNC samples are correlated to effective cellulose content. Despite significantly different relaxation kinetics, the Ein, Eeq and σmax of BNC at 14% effective cellulose content reached values equivalent to ear cartilage (for Eeq, BNC: 2.4±0.4 MPa and ear cartilage: 3.3±1.3 MPa). Additionally, this work shows that BNC can be fabricated into patient-specific auricular shapes. In conclusion, BNC has the capability to reach mechanical properties of relevance for ear cartilage replacement, and can be produced in patient-specific ear shapes.
Keywords :
Microbial cellulose , Tissue engineering , Auricle , stress relaxation , Bacterial cellulose
Journal title :
Journal of the Mechanical Behavior of Biomedical Materials
Serial Year :
2013
Journal title :
Journal of the Mechanical Behavior of Biomedical Materials
Record number :
1405967
Link To Document :
بازگشت