Title of article :
Biomechanical measurements of cortical screw purchase in five types of human and artificial humeri
Author/Authors :
Aziz، نويسنده , , Mina S.R. and Nicayenzi، نويسنده , , Bruce and Crookshank، نويسنده , , Meghan C. and Bougherara، نويسنده , , Habiba and Schemitsch، نويسنده , , Emil H. and Zdero، نويسنده , , Radovan، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2014
Pages :
9
From page :
159
To page :
167
Abstract :
Humerus shaft fracture fixation is largely dependent on cortical screw purchase in host bone. Only 2 prior studies assessed cortical screw purchase in human humeral shafts, but were of very limited scope and did not fully assess humerus material properties. Also, no studies evaluated the human dried or artificial humeri both commercially available from Sawbones. Vashon, WA, USA. Therefore, present authors measured cortical screw purchase in human fresh-frozen (FF) (n=19), human embalmed (EM) (n=18), human dried (DR) (n=14), artificial “normal” (AN) (n=13), and artificial “osteoporotic” (AO) (n=13) humeri. Each humerus had 2 bicortical screws of 3.5-mm diameter inserted 20 mm apart through the shaftʹs anterior and posterior cortices. Absolute force, displacement, and energy for screw-bone interface failure were measured by screw pullout tests, afterwhich data were normalized by total surface area engaged at the screw-bone interface. For absolute force, AN humeri reached a higher load than EM (p=0.001) and AO (p<0.001) humeri, whilst AN humeri achieved lower normalized force than DR humeri (p=0.018). For absolute displacement, AO humeri achieved a lower level than FF humeri (p=0.013), whilst for normalized displacement AN humeri had lower levels than all other groups (p≤0.005) and AO humeri had lower values than EM humeri (p=0.029). For absolute and normalized energy, there were no statistical differences (p≥0.066). Human bone mineral density (BMD) ranged from 0.7 to 1.8 g/cm2 and was linearly correlated to screw pullout parameters in 14 of 18 cases (R=0.61 to 0.96), whilst humerus age was not. Consequently, it is recommended that human fresh-frozen, human embalmed, and human dried humeri can be used interchangeably for cortical screw purchase, since they were statistically equivalent for all comparisons. However, artificial humeri were involved in all statistical differences observed and, thus, may not replicate cortical screw purchase in human humeri. To date, this is the most comprehensive study on cortical screw purchase in human and artificial humeral shafts.
Keywords :
Biomechanics , Cortical screw , Pullout , Purchase , human , Humerus , Artificial
Journal title :
Journal of the Mechanical Behavior of Biomedical Materials
Serial Year :
2014
Journal title :
Journal of the Mechanical Behavior of Biomedical Materials
Record number :
1406351
Link To Document :
بازگشت