Title of article :
Determination of the particle interactions, rheology and the surface roughness relationship for dental restorative ceramics
Author/Authors :
Kes، نويسنده , , M. and Polat، نويسنده , , H. and Kelesoglu، نويسنده , , S. and Polat، نويسنده , , M. and Aksoy، نويسنده , , G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
9
From page :
2959
To page :
2967
Abstract :
The effect of inter-particle interactions on the slurry properties and the final surface roughness of the dental ceramic restoratives was investigated. A commercial dental ceramic powder, IPS Empress 2 veneer, was used as the raw material. gnitudes of the particle–particle interactions were computed by the DLVO theory for the ceramic slurries of different electrolyte solutions (0.1 M, 0.25 M, 0.5 M, 0.75 M, 1 M NaCl and CaCl2). As expected, the energies of particle–particle interactions were influenced significantly by the presence of electrolytes. These computations demonstrated that addition of electrolytes leads to a progressive depression of the repulsive double layer forces. The absence of these forces should inevitably lead to agglomeration caused by the ever-present van der Waals forces. eological measurements carried out using the slurries with same solution properties supported the findings of the DLVO computations. It was found that dental ceramic slurries showed a Newtonian behavior in the absence of electrolytes, which is indicative of little or no agglomeration in the slurry. On the other hand, the same slurries displayed a non-Newtonian, shear thinning behavior in the presence of electrolytes which can be attributed to agglomeration or gelation. ess of the ceramic surfaces produced from these slurries was studied by SEM analysis and profilometer measurements. Contact angle studies were also carried out on the same surfaces. It was observed that the surface became rougher initially with electrolyte addition to a maximum, most probably due to formation of isolated agglomerates due to a reduction of the repulsive double layer forces. After reaching a maximum, surface roughness decreased to a much lower value with further increase in electrolyte concentration. This was most probably caused by the formation of a relatively homogeneous, gel-like structure within the extensively agglomerated slurry due to a complete collapse of the double layer.
Keywords :
surfaces , Dental ceramics , surface , rheology , Ceramic , Contact angle , DLVO , Inter-particle interactions
Journal title :
Journal of the European Ceramic Society
Serial Year :
2009
Journal title :
Journal of the European Ceramic Society
Record number :
1410675
Link To Document :
بازگشت