Title of article :
CuO as a sintering additive for (Bi1/2Na1/2)TiO3–BaTiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics
Author/Authors :
Jo، نويسنده , , Wook and Ollagnier، نويسنده , , Jean-Baptiste and Park، نويسنده , , Jong-Lo and Anton، نويسنده , , Eva-Maria and Kwon، نويسنده , , O-Jong and Park، نويسنده , , Chan-Yeo Seo، نويسنده , , Hyun-Ho and Lee، نويسنده , , Jong-Sook and Erdem، نويسنده , , Emre and Eichel، نويسنده , , Rüdiger-A. and Rِdel، نويسنده , , Jürgen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
2107
To page :
2117
Abstract :
CuO as a sintering additive was utilized to explore a low-temperature sintering of 0.92(Bi1/2Na1/2)TiO3–0.06BaTiO3–0.02(K0.5Na0.5)NbO3 lead-free piezoceramic which has shown a promise for actuator applications due to its large strain. The sintering temperature guaranteeing the relative density of greater than 98% is drastically decreased with CuO addition, and saturates at a temperature as low as ∼930 °C when the addition level exceeds ca. 1 mol.%. Two distinguished features induced by the addition of CuO were noted. Firstly, the initially existing two-phase mixture gradually evolves into a rhombohedral single phase with an extremely small non-cubic distortion. Secondly, a liquid phase induced by the addition of CuO causes an abnormal grain growth, which can be attributed to the grain boundary reentrant edge mechanism. Based on these two observations, it is concluded that the added CuO not only forms a liquid phase but also diffuses into the lattice. In the meantime, temperature dependent permittivity measurements both on unpoled and poled samples suggest that the phase stability of the system is greatly influenced by the addition of CuO. Polarization and strain hysteresis measurements relate the changes in the phase stability closely to the stabilization of ferroelectric order, as exemplified by a significant increase in both the remanent strain and polarization values. Electron paramagnetic resonance (EPR) spectroscopic analysis revealed that the stabilization of ferroelectric order originates from a significant amount of Cu2+ diffusing into the lattice on B-site. There, it acts as an acceptor and forms a defect dipole in association with a charge balancing oxygen vacancy.
Keywords :
Lead-free piezoceramics , C. Dielectric properties , C. Piezoelectric properties , A. Grain growth , B. Spectroscopy
Journal title :
Journal of the European Ceramic Society
Serial Year :
2011
Journal title :
Journal of the European Ceramic Society
Record number :
1412895
Link To Document :
بازگشت