Title of article :
Utilisation of chemical signals by inquiline wasps in entering their host figs
Author/Authors :
Gu، نويسنده , , Ding and Yang، نويسنده , , Da-Rong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The fig tree, Ficus curtipes, hosts an obligate pollinating wasp, an undescribed Eupristina sp., but can also be pollinated by two inquiline (living in the burrow, nest, gall, or other habitation of another animal) wasps, Diaziella yangi and an undescribed Lipothymus sp. The two inquilines are unable to independently induce galls and depend on the galls induced by the obligate pollinator for reproduction and, therefore, normally enter receptive F. curtipes figs colonised by the obligate pollinators. However, sometimes the inquilines also enter figs that are not colonised by the pollinators, despite consequent reproductive failure. It is still unknown which signal(s) the inquilines use in entering the colonised and non-colonised figs. We conducted behavioural experiments to investigate several possible signals utilised by the inquilines in entering their host receptive figs. Our investigation showed that both inquiline species enter the receptive F. curtipes figs in response to the body odours of the obligate wasps and one of the main compounds emitted by the figs, 6-methyl-5-hepten-2-one. The compound was not found in the pollinator body odours, suggesting that the two inquiline wasps can utilise two signals to enter their host figs, which is significant for the evolution of the fig-fig wasp system. These inquilines could evolve to become mutualists of the figs if they evolve the ability to independently gall fig flowers; there is, however, another possibility that a monoecious Ficus species hosting such inquilines may evolve into a dioecious one if these inquilines cannot evolve the above-mentioned ability. Additionally, this finding provides evidence for the evolution of chemical communication between plants and insects.
Keywords :
6-Methyl-5-hepten-2-one , Diaziella yangi , Lipothymus sp. , Body odour , chemical signal , Inquiline wasp
Journal title :
Journal of Insect Physiology
Journal title :
Journal of Insect Physiology