Title of article :
A multiple reflection attenuated total reflectance sensor incorporating a glass–indium tin oxide surface modified via direct attachment or film encapsulation of colloidal gold nanoparticles
Author/Authors :
Weikel، نويسنده , , Arlin L. and Conklin، نويسنده , , Sean D. and Richardson، نويسنده , , John N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
This paper outlines improvements in sensitivity and detection limit for an optical sensor based on measurement of change in the surface plasmon resonance (SPR) absorbance of substrate-confined colloidal Au nanoparticles. Two routes were taken to obtain these improvements. First, a thin-layer, multiple internal reflection flow cell that allows for simultaneous potential control of the sensing surface was employed. This cell geometry yielded a ca. 18-fold increase in sensitivity to changes in bulk refractive index compared to a similar, previously reported sensor employing a single pass incident beam. Our second improvement involves preconcentration and encapsulation of colloidal Au nanoparticles into a quaternized poly(4-vinylpyridine) (QPVP) cationic exchange film spin-coated onto the glass–indium tin oxide (ITO) substrate surface. We demonstrate that the encapsulated nanoparticles retain their SPR activity; this approach therefore represents a novel and simple method of preparing a highly sensitive nanoparticle-based SPR sensing surface.
Keywords :
surface plasmon resonance , Nanoparticle , Glass–indium tin oxide
Journal title :
Sensors and Actuators B: Chemical
Journal title :
Sensors and Actuators B: Chemical