Title of article :
Enzymatic saccharification of lignocellulosic materials after treatment with supercritical carbon dioxide
Author/Authors :
Santos، نويسنده , , Ana Luiza Ferreira and Kawase، نويسنده , , Kلtia Yuri Fausta and Coelho، نويسنده , , Gerson Luiz Vieira، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
277
To page :
282
Abstract :
Lignocellulosic materials, such as agricultural residues, are abundant renewable resources for bioconversion to sugars. The sugar cane bagasse was studied here to obtain simple sugars for the production of alcohols and other chemicals. The crystalline structure of cellulose and the lignin that physically seals the surrounding cellulose fibers makes enzymatic hydrolysis difficult by preventing the contact between the cellulose and the enzyme. Two different samples of sugar cane (bagasse pulp and skin) were used and compared with microcrystalline cellulose (Avicel). The investigated samples were pretreated with SC-CO2 explosion before hydrolysis. The experiments were conducted at 12, 14 and 16 MPa at a temperature of 60 °C. In this process, particles of celluloses within the size range from 0.25 to 0.42 mm were placed in defined amounts inside the experimental vessel, CO2 was injected and let stand for 5 and 60 min. The explosion pretreatment of cellulosic materials by SC-CO2 was performed in an apparatus of a static type with 300 ml of volume. The hydrolysis reaction using cellulose enzyme was carried at 55 °C for 8 h. After the pretreatment, the glucose yield increased in 72% to the bagasse sample. The SC-CO2 pretreatment together with alkali increased the glucose yield in 20% as compared with alkali only. X-ray, microscopy and thermal analysis were used to investigate the effect of the pretreatment.
Keywords :
Lignocellulosic materials , Sugar cane bagasse , SC-CO2 explosion , Enzyme , Hydrolysis
Journal title :
Journal of Supercritical Fluids
Serial Year :
2011
Journal title :
Journal of Supercritical Fluids
Record number :
1423370
Link To Document :
بازگشت