Author/Authors :
Stott، نويسنده , , F.H.، نويسنده ,
Abstract :
Temperature can have a considerable effect on the extent of wear damage to metallic components. During reciprocating sliding, under conditions where frictional heating has little impact on surface temperatures, there is generally a transition from severe wear to mild wear after a time of sliding that decreases with increase in ambient temperature. This is due to the generation and retention of oxide and partially-oxidized metal debris particles on the contacting load-bearing surfaces; these are compacted and agglomerated by the sliding action, giving protective layers on such surfaces. At low temperatures, from 20 to 200°C, the layers generally consist of loosely-compacted particles; at higher temperatures, there is an increase in the rates of generation and retention of particles while compaction, sintering and oxidation of the particles in the layers are facilitated, leading to development of hard, very protective oxide ‘glaze’ surfaces. This paper reviews some of the main findings of extensive research programmes into the development of such wear-protective layers, including a model that accounts closely for the observed effects of temperature on wear rates during like-on-like sliding.
Keywords :
High-temperature wear , Sliding wear , Oxide glaze , Wear-protective oxide