Title of article :
Elastic interaction of spherical nanoinhomogeneities with Gurtin–Murdoch type interfaces
Author/Authors :
Kushch، نويسنده , , Volodymyr I. and Mogilevskaya، نويسنده , , Sofia G. and Stolarski، نويسنده , , Henryk K. and Crouch، نويسنده , , Steven L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
A complete solution has been obtained for the problem of multiple interacting spherical inhomogeneities with a Gurtin–Murdoch interface model that includes both surface tension and surface stiffness effects. For this purpose, a vectorial spherical harmonics-based analytical technique is developed. This technique enables solution of a wide class of elasticity problems in domains with spherical boundaries/interfaces and makes fulfilling the vectorial boundary or interface conditions a routine procedure. A general displacement solution of the single-inhomogeneity problem is sought in a form of a series of the vectorial solutions of the Lame equation. This solution is valid for any non-uniform far-field load and it has a closed form for polynomial loads. The superposition principle and re-expansion formulas for the vectorial solutions of the Lame equation extend this theory to problems involving multiple inhomogeneities. The developed semi-analytical technique precisely accounts for the interactions between the nanoinhomogeneities and constitutes an efficient computational tool for modeling nanocomposites. Numerical results demonstrate the accuracy and numerical efficiency of the approach and show the nature and extent to which the elastic interactions between the nanoinhomogeneities with interface stress affect the elastic fields around them.
Keywords :
Gurtin–Murdoch model , Vectorial surface harmonics , Spherical inhomogeneity , Multipole expansion , Stress concentration
Journal title :
Journal of the Mechanics and Physics of Solids
Journal title :
Journal of the Mechanics and Physics of Solids