Title of article :
Investigation of the relationship between the white layer thickness and 3D surface texture parameters in the die sinking EDM process
Author/Authors :
Ramasawmy، Rajendranath نويسنده , , H. and Blunt، نويسنده , , L. and Rajurkar، نويسنده , , K.P.، نويسنده ,
Issue Information :
فصلنامه با شماره پیاپی سال 2005
Pages :
12
From page :
479
To page :
490
Abstract :
It is a well known fact that the EDM process results in the formation of a hard, brittle recast layer on the componentʹs surface. Several investigations have been carried out in order to assess the nature of the recast layer in terms of its phase structure, the microhardness, presence and the density of cracks, and other surface features. Some researchers [Barash, Delpretti] have reported mathematical relationships between the thickness of the white layer and 2D amplitude surface roughness parameters (such as Ra and Rt). But so far no investigation has been reported which correlates the thickness of the white layer with 3D surface roughness parameters, especially those related to spatial parameters. This paper presents an experimental investigation of the effect of the EDM process factors (current and pulse on-time) on the thickness of the white layer. Empirical equations relating the thickness of the white layer with 3D surface texture amplitude, spatial and volume parameters are presented and their physical basis is discussed. The results of this study show that a better correlation can be obtained between the average thickness of the white layer (AWLT) and the spatial parameter, Sds as compared to other 3D surface texture parameters. This is believed to be mainly due to the similar effect of the current and pulse on-time on both AWLT and Sds. The possible effect of surface tension between the solid and liquid phases on the thickness of the white layer during erosion is also discussed.
Keywords :
White layer thickness , Density of summits , Pulse currents , Pulse on-time
Journal title :
Precision Engineering
Serial Year :
2005
Journal title :
Precision Engineering
Record number :
1429084
Link To Document :
بازگشت