Title of article :
Engineering improved ethanol production in Escherichia coli with a genome-wide approach
Author/Authors :
Woodruff، نويسنده , , Lauren B.A. and Boyle، نويسنده , , Nanette R. and Gill، نويسنده , , Ryan T.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2013
Pages :
11
From page :
1
To page :
11
Abstract :
A key challenge to the commercial production of commodity chemical and fuels is the toxicity of such molecules to the microbial host. While a number of studies have attempted to engineer improved tolerance for such compounds, the majority of these studies have been performed in wild-type strains and culturing conditions that differ considerably from production conditions. Here we applied the multiscalar analysis of library enrichments (SCALEs) method and performed a growth selection in an ethanol production system to quantitatively map in parallel all genes in the genome onto ethanol tolerance and production. In order to perform the selection in an ethanol-producing system, we used a previously engineered Escherichia coli ethanol production strain (LW06; ATCC BAA-2466) (Woodruff et al., in press), as the host strain for the multiscalar genomic library analysis (>106 clones for each library of 1, 2, or 4 kb overlapping genomic fragments). By testing individually selected clones, we confirmed that growth selections enriched for clones with both improved ethanol tolerance and production phenotypes. We performed combinatorial testing of the top genes identified (uspC, otsA, otsB) to investigate their ability to confer improved ethanol tolerance or ethanol production. We determined that overexpression of otsA was required for improved tolerance and productivity phenotypes, with the best performing strains showing up to 75% improvement relative to the parent production strain.
Keywords :
PRODUCTION , Fermentation , Metabolic engineering , Ethanol , TOLERANCE , biofuel
Journal title :
Metabolic Engineering
Serial Year :
2013
Journal title :
Metabolic Engineering
Record number :
1429541
Link To Document :
بازگشت