Title of article :
Frequency stabilized HeNe gas laser with 3.5 mW from a single mode
Author/Authors :
Ellis، نويسنده , , Jonathan D. and Voigt، نويسنده , , Dirk and Spronck، نويسنده , , Jo W. and Verlaan، نويسنده , , Ad L. and Munnig Schmidt، نويسنده , , Robert H.، نويسنده ,
Issue Information :
فصلنامه با شماره پیاپی سال 2012
Pages :
7
From page :
203
To page :
209
Abstract :
This paper describes an optical frequency stabilization technique using a three-mode Helium Neon laser at 632.8 nm. Using this configuration, a maximum frequency stability relative to an iodine stabilized laser of 6×10−12 (71 s integration time) was achieved. Two long term measurements of 62 h and 40 h showed fractional frequency fluctuations of 6.2×10−10 (2σ) and 1.6×10−10 (2σ) when correcting for known frequency fluctuations outside the controller bandwidth, respectively. This stabilization scheme maximizes the available optical power (1.7 mW in this instance) because the output mode is in the center of the HeNe gain curve. This stabilization technique was also verified for a larger HeNe laser with a lower free spectral range. While not optimized for this configuration and laser, we demonstrated fractional frequency fluctuations below 1×10−8 with 3.5 mW of usable output power. This is useful for multi-axis systems or systems employing fiber coupling. In this paper, the overall system is described and data containing the frequency locking signal sensitivity, profile during laser warm up, sensitivity to environmental fluctuations, and optical power of the locking signal is shown.
Keywords :
HeNe lasers , Optical metrology , Frequency metrology , Laser stabilization , Interferometry
Journal title :
Precision Engineering
Serial Year :
2012
Journal title :
Precision Engineering
Record number :
1429714
Link To Document :
بازگشت