Title of article :
Normalization approach to the stochastic gradient radial basis function network algorithm for odor sensing systems
Author/Authors :
Kim، نويسنده , , Namyong and Byun، نويسنده , , Hyung-Gi and Persaud، نويسنده , , Krishna C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
6
From page :
407
To page :
412
Abstract :
A method of adapting centers and weights in the radial basis function network (RBFN) is introduced using a normalization method to the stochastic gradient (RBFN-SG) algorithm for odor classification. The RBFN input data vector is from a conducting polymer sensor array. Using Taylorʹs expansion, a normalized form of the RBFN-SG algorithm is derived. The tracking dynamics of the normalized method appear to be less sensitive to widely varying inputs than the RBFN-SG. Experimental results of the proposed method have shown a faster learning speed, a lower mean squared error (MSE) and better classification performance.
Keywords :
normalization , Odor , RBFN , Stochastic gradient
Journal title :
Sensors and Actuators B: Chemical
Serial Year :
2007
Journal title :
Sensors and Actuators B: Chemical
Record number :
1436366
Link To Document :
بازگشت