Title of article :
Nanostructured TiO2–CeO2 mixed oxides by an aqueous sol–gel process: Effect of Ce:Ti molar ratio on physical and sensing properties
Author/Authors :
Mohammadi، نويسنده , , M.R. and Fray، نويسنده , , D.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
631
To page :
640
Abstract :
Nanostructured TiO2–CeO2 thin films and powders were prepared by a straightforward aqueous particulate sol–gel route. Titanium (IV) isopropoxide and cerium chloride were used as precursors, and hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. The effect of Ce:Ti molar ratio was studied on the crystallisation behaviour of the products. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders crystallised at the low temperature of 500 °C, containing anatase–TiO2, rutile–TiO2 and cubic-CeO2 phases, as well as Ti8O15, Ti3O5 and Ce11O20 depending on annealing temperature and Ce:Ti molar ratio. Furthermore, it was found that CeO2 retarded the anatase to rutile transformation up to 700 °C. The activation energy of crystallite growth was calculated in the range 1.92–8.79 kJ/mol. Transmission electron microscope (TEM) image showed that one of the smallest crystallite sizes was obtained for TiO2–CeO2 binary mixed oxide, being 3 nm at 500 °C. Field emission scanning electron microscope (FE-SEM) analysis revealed that the deposited thin films had nanostructured morphology with the average grain size in the range 17–28 nm at 500 °C. Thin films produced under optimised conditions showed excellent microstructural properties for gas sensing applications. They exhibited a remarkable response towards low concentrations of CO gas at low operating temperature of 200 °C, resulting in increased thermal stability of sensing films as well as a decrease in their power consumption. Furthermore, calibration curves revealed that TiO2–CeO2 sensors follow the power law, S = A[gas]B (where S is sensor response, coefficients A and B are constants and [gas] is the gas concentration) for the two types of gases, and they have excellent capability for the detection of low gas concentrations.
Keywords :
Aqueous particulate sol–gel , TiO2–CeO2 , Nanostructure , Ce:Ti molar ratio
Journal title :
Sensors and Actuators B: Chemical
Serial Year :
2010
Journal title :
Sensors and Actuators B: Chemical
Record number :
1438591
Link To Document :
بازگشت