Title of article :
Information-theoretic optimization of chemical sensors
Author/Authors :
Vergara، نويسنده , , Alexander and Muezzinoglu، نويسنده , , Mehmet K. and Rulkov، نويسنده , , Nikolai and Huerta، نويسنده , , Ramon، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
298
To page :
306
Abstract :
A gas-sensor optimization scheme for odor discrimination is introduced in this paper. We formulate the odor class separability in terms of a fundamental tool in information theory, namely the Kullback–Leibler distance (KL-distance), which gives a quantitative measure of the mutual difference between two probability distributions. We argue that maximizing this measure over a controllable operating parameter of a sensing element promotes robust odor discrimination. We demonstrate on a sample dataset that tuning the operating temperature of a metal oxide sensor based on the suggested criterion not only yields a substantial improvement in classification performance but also informs about those operating temperatures that cause a total confusion in the odor discrimination.
Keywords :
Gas-sensor optimization , Odor discrimination , Kullback–Leibler distance , Metal–oxide gas sensors , Information theory
Journal title :
Sensors and Actuators B: Chemical
Serial Year :
2010
Journal title :
Sensors and Actuators B: Chemical
Record number :
1438623
Link To Document :
بازگشت