Title of article :
Optimization of the lateral field excited platform for liquid sensing applications
Author/Authors :
Laura Fochtmann · Ramin Mojtabai، نويسنده , , J. and Peters، نويسنده , , C. and Fernandez، نويسنده , , R. and Lucklum، نويسنده , , R. and McCann، نويسنده , , D. and Vetelino، نويسنده , , J. and Arnau، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
9
From page :
95
To page :
103
Abstract :
Investigating the electrical sensitivity of lateral field excited resonators (LFE) we observed two characteristics to highly impact sensitivity. First, an increase of the piezoelectric coupling factor k enhances the viscosity measurement range. Higher coupling factors are provided by the use of new materials, namely lithium tantalite (LiTaO3) and lithium niobate (LiNbO3) with coupling factors of 0.43 and 0.91 respectively. Since the sensitivity to electrical load parameters is governed by relative permittivity of the resonator material itself, the sensitivity to electrical parameters is found to decrease for new materials. Second, an electrode pattern that reveals higher energy trapping in the center of crystal was investigated. Compared to common LFE pattern, a third electrode was introduced in center between bite wing electrodes. Finite element modeling in ANSYS© shows enhanced sensitivity to low relative permittivity in range from 1 to 8. We performed experiments to verify the simulation results. Although an increased frequency shift compared to common LFE resonators was not observed, significantly higher conductance amplitudes occurred, which enhances the measurement range to high viscosity liquids, too.
Keywords :
Lateral field excitation , Lithium tantalate , Lithium niobate , finite element modeling , Liquid sensing , Quartz crystal resonator
Journal title :
Sensors and Actuators B: Chemical
Serial Year :
2012
Journal title :
Sensors and Actuators B: Chemical
Record number :
1440766
Link To Document :
بازگشت