Title of article :
A descending chain condition for groups definable in -minimal structures
Author/Authors :
Berarducci، نويسنده , , Alessandro and Otero، نويسنده , , Margarita and Peterzil، نويسنده , , Yaa’cov and Pillay، نويسنده , , Anand، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
11
From page :
303
To page :
313
Abstract :
We prove that if G is a group definable in a saturated o -minimal structure, then G has no infinite descending chain of type-definable subgroups of bounded index. Equivalently, G has a smallest (necessarily normal) type-definable subgroup G 00 of bounded index and G / G 00 equipped with the “logic topology” is a compact Lie group. These results give partial answers to some conjectures of the fourth author.
Keywords :
o -minimality , Compact groups , Type-definable subgroups , Descending chain conditions
Journal title :
Annals of Pure and Applied Logic
Serial Year :
2005
Journal title :
Annals of Pure and Applied Logic
Record number :
1443658
Link To Document :
بازگشت