Title of article :
Compact spaces, elementary submodels, and the countable chain condition
Author/Authors :
Junqueira، نويسنده , , Lْcia R. and Larson، نويسنده , , Paul and Tall، نويسنده , , Franklin D.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
10
From page :
107
To page :
116
Abstract :
Given a space 〈 X , J 〉 in an elementary submodel M of H ( θ ) , define X M to be X ∩ M with the topology generated by { U ∩ M : U ∈ J ∩ M } . It is established, using anti-large-cardinals assumptions, that if X M is compact and its regular open algebra is isomorphic to that of a continuous image of some power of the two-point discrete space, then X = X M . Assuming CH + SCH (the Singular Cardinals Hypothesis) in addition, the result holds for any compact X M satisfying the countable chain condition.
Keywords :
Squashable , Countable chain condition , COMPACT , reflection , Elementary submodel , Co-absolute with dyadic compact space
Journal title :
Annals of Pure and Applied Logic
Serial Year :
2006
Journal title :
Annals of Pure and Applied Logic
Record number :
1443858
Link To Document :
بازگشت