Title of article :
Gِdel algebras free over finite distributive lattices
Author/Authors :
Aguzzoli، نويسنده , , Stefano and Gerla، نويسنده , , Brunella and Marra، نويسنده , , Vincenzo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Gödel algebras form the locally finite variety of Heyting algebras satisfying the prelinearity axiom ( x → y ) ∨ ( y → x ) = ⊤ . In 1969, Horn proved that a Heyting algebra is a Gödel algebra if and only if its set of prime filters partially ordered by reverse inclusion–i.e. its prime spectrum–is a forest. Our main result characterizes Gödel algebras that are free over some finite distributive lattice by an intrisic property of their spectral forest.
Keywords :
Heyting algebras , Distributive lattices , Free objects , 06D20 , Duality for finitely presented objects , 06D50 , Partially Ordered Sets , Gِdel algebras
Journal title :
Annals of Pure and Applied Logic
Journal title :
Annals of Pure and Applied Logic