• Title of article

    Gِdel algebras free over finite distributive lattices

  • Author/Authors

    Aguzzoli، نويسنده , , Stefano and Gerla، نويسنده , , Brunella and Marra، نويسنده , , Vincenzo، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    11
  • From page
    183
  • To page
    193
  • Abstract
    Gödel algebras form the locally finite variety of Heyting algebras satisfying the prelinearity axiom ( x → y ) ∨ ( y → x ) = ⊤ . In 1969, Horn proved that a Heyting algebra is a Gödel algebra if and only if its set of prime filters partially ordered by reverse inclusion–i.e. its prime spectrum–is a forest. Our main result characterizes Gödel algebras that are free over some finite distributive lattice by an intrisic property of their spectral forest.
  • Keywords
    Heyting algebras , Distributive lattices , Free objects , 06D20 , Duality for finitely presented objects , 06D50 , Partially Ordered Sets , Gِdel algebras
  • Journal title
    Annals of Pure and Applied Logic
  • Serial Year
    2008
  • Journal title
    Annals of Pure and Applied Logic
  • Record number

    1444261