Title of article
Computable categoricity and the Ershov hierarchy
Author/Authors
Bakhadyr Khoussainov، نويسنده , , Bakhadyr and Stephan، نويسنده , , Frank and Yang، نويسنده , , Yue، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
10
From page
86
To page
95
Abstract
In this paper, the notions of F α -categorical and G α -categorical structures are introduced by choosing the isomorphism such that the function itself or its graph sits on the α -th level of the Ershov hierarchy, respectively. Separations obtained by natural graphs which are the disjoint unions of countably many finite graphs. Furthermore, for size-bounded graphs, an easy criterion is given to say when it is computable-categorical and when it is only G 2 -categorical; in the latter case it is not F α -categorical for any recursive ordinal α .
Keywords
Ershov hierarchy , recursion theory , Model theory , Categoricity , Graphs with finite components
Journal title
Annals of Pure and Applied Logic
Serial Year
2008
Journal title
Annals of Pure and Applied Logic
Record number
1444279
Link To Document