• Title of article

    Definability in the -quasiorder of labeled forests

  • Author/Authors

    Kudinov، نويسنده , , Oleg V. and Selivanov، نويسنده , , Victor L. and Zhukov، نويسنده , , Anton V.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    15
  • From page
    318
  • To page
    332
  • Abstract
    We prove that for any k ≥ 3 each element of the h -quasiorder of finite k -labeled forests is definable in the ordinary first order language and, respectively, each element of the h -quasiorder of (at most) countable k -labeled forests is definable in the language L ω 1 ω , in both cases provided that the minimal non-smallest elements are allowed as parameters. As corollaries, we characterize the automorphism groups of both structures and show that the structure of finite k -forests is atomic. Similar results hold true for two other relevant structures: the h -quasiorder of finite (resp. countable) k -labeled trees and of finite (resp. countable) k -labeled trees with a fixed label of the root element.
  • Keywords
    Labeled tree , Labeled forest , h -quasiorder , atomic structure , automorphism , Definability
  • Journal title
    Annals of Pure and Applied Logic
  • Serial Year
    2009
  • Journal title
    Annals of Pure and Applied Logic
  • Record number

    1444310