Title of article :
First-order t-norm based fuzzy logics with truth-constants: Distinguished semantics and completeness properties
Author/Authors :
Esteva، نويسنده , , Francesc and Godo، نويسنده , , Lluيs and Noguera، نويسنده , , Carles، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
This paper aims at being a systematic investigation of different completeness properties of first-order predicate logics with truth-constants based on a large class of left-continuous t-norms (mainly continuous and weak nilpotent minimum t-norms). We consider standard semantics over the real unit interval but also we explore alternative semantics based on the rational unit interval and on finite chains. We prove that expansions with truth-constants are conservative and we study their real, rational and finite chain completeness properties. Particularly interesting is the case of considering canonical real and rational semantics provided by the algebras where the truth-constants are interpreted as the numbers they actually name. Finally, we study completeness properties restricted to evaluated formulae of the kind r ¯ → φ , where φ has no additional truth-constants.
Keywords :
Algebraic logic , Mathematical fuzzy logic , residuated lattices , First-order predicate non-classical logics , T-norm based fuzzy logics , Truth-constants
Journal title :
Annals of Pure and Applied Logic
Journal title :
Annals of Pure and Applied Logic