Title of article :
A measure-theoretic proof of Turing incomparability
Author/Authors :
Conidis، نويسنده , , Chris J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
6
From page :
83
To page :
88
Abstract :
We prove that if S is an ω -model of weak weak König’s lemma and A ∈ S , A ⊆ ω , is incomputable, then there exists B ∈ S , B ⊆ ω , such that A and B are Turing incomparable. This extends a recent result of Kučera and Slaman who proved that if S 0 is a Scott set (i.e. an ω -model of weak König’s lemma) and A ∈ S 0 , A ⊆ ω , is incomputable, then there exists B ∈ S 0 , B ⊆ ω , such that A and B are Turing incomparable.
Keywords :
computability theory , Measure theory , Baire category theorem , randomness , Reverse Mathematics , forcing
Journal title :
Annals of Pure and Applied Logic
Serial Year :
2010
Journal title :
Annals of Pure and Applied Logic
Record number :
1444513
Link To Document :
بازگشت