Title of article :
Efficient computation of the Greenʹs function and its derivatives for three-dimensional anisotropic elasticity in BEM analysis
Author/Authors :
Shiah، نويسنده , , Y.C. and Tan، نويسنده , , C.L. and Wang، نويسنده , , C.Y.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
An alternative scheme to compute the Greenʹs function and its derivatives for three dimensional generally anisotropic elastic solids is presented in this paper. These items are essential in the formulation of the boundary element method (BEM); their evaluation has remained a subject of interest because of the mathematical complexity. The Greenʹs function considered here is the one introduced by Ting and Lee [Q. J. Mech. Appl. Math. 1997; 50: 407–26] which is of real-variable, explicit form expressed in terms of Strohʹs eigenvalues. It has received attention in BEM only quite recently. By taking advantage of the periodic nature of the spherical angles when it is expressed in the spherical coordinate system, it is proposed that this Greenʹs function be represented by a double Fourier series. The Fourier coefficients are determined numerically only once for a given anisotropic material; this is independent of the number of field points in the BEM analysis. Derivatives of the Greenʹs function can be performed by direct spatial differentiation of the Fourier series. The resulting formulations are more concise and simpler than those derived analytically in closed form in previous studies. Numerical examples are presented to demonstrate the veracity and superior efficiency of the scheme, particularly when the number of field points is very large, as is typically the case when analyzing practical three dimensional engineering problems.
Keywords :
Greenיs function , fundamental solution , Strohיs eigenvalues , Anisotropic elasticity , boundary element method , Fourier series
Journal title :
Engineering Analysis with Boundary Elements
Journal title :
Engineering Analysis with Boundary Elements