Title of article :
Stable numerical solution to a Cauchy problem for a time fractional diffusion equation
Author/Authors :
Wei، نويسنده , , T. and Zhang، نويسنده , , Z.Q.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
10
From page :
128
To page :
137
Abstract :
In this paper, we consider a Cauchy problem of one-dimensional time fractional diffusion equation for determining the Cauchy data at x=1 from the Cauchy data at x=0. Based on the separation of variables and Duhamelʹs principle, we transform the Cauchy problem into a first kind Volterra integral equation with the Neumann data as an unknown function and then show the ill-posedness of problem. Further, we use a boundary element method combined with a generalized Tikhonov regularization to solve the first kind integral equation. The generalized cross validation choice rule is applied to find a suitable regularization parameter. Three numerical examples are provided to show the effectiveness and robustness of the proposed method.
Keywords :
Ill-posed problem , Fractional diffusion equation , boundary element method , Cauchy problem , Tikhonov Regularization
Journal title :
Engineering Analysis with Boundary Elements
Serial Year :
2014
Journal title :
Engineering Analysis with Boundary Elements
Record number :
1446769
Link To Document :
بازگشت